New approaches in education and health sciences management

New approaches in education and health sciences management

Comparison of the Effects of Empagliflozin and Metformin on Treatment Satisfaction in Patients with Type 2 Diabetes

Document Type : Original Article

Author
Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
Abstract
Background and Objective: Among the effective medications for lowering blood glucose levels in diabetic patients, SGLT2 inhibitors and biguanides are widely used. However, limited information is available regarding their effects on treatment satisfaction and their direct comparison. Therefore, the aim of this study was to compare the effects of empagliflozin (as an SGLT2 inhibitor) and metformin (a biguanide) on treatment satisfaction in patients with type 2 diabetes.
Methods: In this quasi-experimental study, 30 middle-aged male patients with type 2 diabetes were randomly selected from the Diabetes Association Center of Sistan and Baluchestan and assigned into three groups: empagliflozin (n = 10), metformin (n = 10), and control (n = 10). Treatment satisfaction was assessed using the Diabetes Treatment Satisfaction Questionnaire (DTSQ) developed by Bradley (1994). Patients in the empagliflozin group received a daily dose of 100 mg for three months, while patients in the metformin group received up to 1500 mg/day for 8 to 12 weeks. Data were analyzed using one-way analysis of variance (ANOVA) followed by Tukey’s post hoc test.
Results: The results indicated a significant difference in treatment satisfaction among the study groups. Additionally, treatment satisfaction in the metformin group was significantly higher than that in the empagliflozin and control groups (P = 0.038 and P = 0.006, respectively). Furthermore, treatment satisfaction in the empagliflozin group was significantly higher than in the control group (P = 0.003).
Conclusion: Considering the effects of empagliflozin and metformin on treatment satisfaction, it can be concluded that the use of these medications may serve as a practical approach to improving patients’ satisfaction with their treatment

Highlights

1.             Grytsai O, Myrgorodska I, Rocchi S, Ronco C, Benhida R. Biguanides drugs: Past success stories and promising future for drug discovery. Eur J Med Chem. 2021;224:113726. doi: 10.1016/j.ejmech.2021.113726

2.             Bailey CJ, Day C, Bellary S. Renal Protection with SGLT2 Inhibitors: Effects in Acute and Chronic Kidney Disease. Curr Diab Rep. 2022 Jan;22(1):39-52. doi: 10.1007/s11892-021-01442-z

3.             Cowie MR, Fisher M. SGLT2 inhibitors: mechanisms of cardiovascular benefit beyond glycaemic control. Nat Rev Cardiol. 2020;17(12):761-772. doi: 10.1038/s41569-020-0406-8

4.             Rosado JA, Diez-Bello R, Salido GM, Jardin I. Fine-tuning of microRNAs in Type 2 Diabetes Mellitus. Curr Med Chem. 2019;26(22):4102-4118. doi: 10.2174/0929867325666171205163944

5.             Mahdirejei HA, Peeri M, Azarbayjani MA, Fattahi Masrour F. Fluoxetine combined with swimming exercise synergistically reduces lipopolysaccharide-induced depressive-like behavior by normalizing the HPA axis and brain inflammation in mice. Pharmacol Biochem Behav. 2023;232:173640. doi: 10.1016/j.pbb.2023.173640

6.             Upadhyay A. SGLT2 Inhibitors and Kidney Protection: Mechanisms Beyond Tubuloglomerular Feedback. Kidney360. 2024;5(5):771-782. doi: 10.34067/KID.0000000000000425

7.             Rav Acha M, Glikson M. Type 2 diabetes mellitus association with atrioventricular block. Eur Heart J. 2023;44(9):762-764. doi: 10.1093/eurheartj/ehac755

8.             Accili D, Deng Z, Liu Q. Insulin resistance in type 2 diabetes mellitus. Nat Rev Endocrinol. 2025;21(7):413-426. doi: 10.1038/s41574-025-01114-y

9. Thipsawat S. Early detection of diabetic nephropathy in patient with type 2 diabetes mellitus: A review of the literature. Diab Vasc Dis Res. 2021;18(6):14791641211058856. doi: 10.1177/14791641211058856

10. Dharia A, Khan A, Sridhar VS, Cherney DZI. SGLT2 Inhibitors: The Sweet Success for Kidneys. Annu Rev Med. 2023;74:369-384. doi: 10.1146/annurev-med-042921-102135

11. Zhang Y, Yang Y, Huang Q, Zhang Q, Li M, Wu Y. The effectiveness of lifestyle interventions for diabetes remission on patients with type 2 diabetes mellitus: A systematic review and meta-analysis. Worldviews Evid Based Nurs. 2023;20(1):64-78. doi: 10.1111/wvn.12608

12. Siddiqui R, Obi Y, Dossabhoy NR, Shafi T. Is There a Role for SGLT2 Inhibitors in Patients with End-Stage Kidney Disease? Curr Hypertens Rep. 2024;26(12):463-474. doi: 10.1007/s11906-024-01314-3

13. Markowicz-Piasecka M, Sikora J, Zajda A, Huttunen KM. Novel halogenated sulfonamide biguanides with anti-coagulation properties. Bioorg Chem. 2020;94:103444. doi: 10.1016/j.bioorg.2019.103444

14. Krause M, De Vito G. Type 1 and Type 2 Diabetes Mellitus: Commonalities, Differences and the Importance of Exercise and Nutrition. Nutrients. 2023;15(19):4279. doi: 10.3390/nu15194279

15. Resnick B, Galik E, Boltz M, Holmes S, Fix S, Vigne E, et al. Polypharmacy in Assisted Living and Impact on Clinical Outcomes. Consult Pharm. 2018;33(6):321-330. doi: 10.1016/j.ejmech.2021.113378

16. Kathuria D, Raul AD, Wanjari P, Bharatam PV. Biguanides: Species with versatile therapeutic applications. Eur J Med Chem. 2021;219:11337. doi: 10.1146/annurev-physiol-031620-095920

17. Rippon MG, Rogers AA, Ousey K. Polyhexamethylene biguanide and its antimicrobial role in wound healing: a narrative review. J Wound Care. 2023;32(1):5-20. doi: 10.12968/jowc.2023.32.1.5

18. Amouzad Mahdirejei H, Peeri M, Azarbayjani MA, Masrour FF. Diazepam and exercise training combination synergistically reduces lipopolysaccharide-induced anxiety-like behavior and oxidative stress in the prefrontal cortex of mice. Neurotoxicology. 2023;97:101-108. doi: 10.1016/j.neuro.2023.06.004

19. Jhund PS. SGLT2 Inhibitors and Heart Failure with Preserved Ejection Fraction. Heart Fail Clin. 2022;18(4):579-586. doi: 10.1016/j.hfc.2022.03.010  

Keywords

Ethics Approval ID: IR.ZAUMS.REC.1390.325

 

1.             Grytsai O, Myrgorodska I, Rocchi S, Ronco C, Benhida R. Biguanides drugs: Past success stories and promising future for drug discovery. Eur J Med Chem. 2021;224:113726. doi: 10.1016/j.ejmech.2021.113726
2.             Bailey CJ, Day C, Bellary S. Renal Protection with SGLT2 Inhibitors: Effects in Acute and Chronic Kidney Disease. Curr Diab Rep. 2022 Jan;22(1):39-52. doi: 10.1007/s11892-021-01442-z
3.             Cowie MR, Fisher M. SGLT2 inhibitors: mechanisms of cardiovascular benefit beyond glycaemic control. Nat Rev Cardiol. 2020;17(12):761-772. doi: 10.1038/s41569-020-0406-8
4.             Rosado JA, Diez-Bello R, Salido GM, Jardin I. Fine-tuning of microRNAs in Type 2 Diabetes Mellitus. Curr Med Chem. 2019;26(22):4102-4118. doi: 10.2174/0929867325666171205163944
5.             Mahdirejei HA, Peeri M, Azarbayjani MA, Fattahi Masrour F. Fluoxetine combined with swimming exercise synergistically reduces lipopolysaccharide-induced depressive-like behavior by normalizing the HPA axis and brain inflammation in mice. Pharmacol Biochem Behav. 2023;232:173640. doi: 10.1016/j.pbb.2023.173640
6.             Upadhyay A. SGLT2 Inhibitors and Kidney Protection: Mechanisms Beyond Tubuloglomerular Feedback. Kidney360. 2024;5(5):771-782. doi: 10.34067/KID.0000000000000425
7.             Rav Acha M, Glikson M. Type 2 diabetes mellitus association with atrioventricular block. Eur Heart J. 2023;44(9):762-764. doi: 10.1093/eurheartj/ehac755
8.             Accili D, Deng Z, Liu Q. Insulin resistance in type 2 diabetes mellitus. Nat Rev Endocrinol. 2025;21(7):413-426. doi: 10.1038/s41574-025-01114-y
9. Thipsawat S. Early detection of diabetic nephropathy in patient with type 2 diabetes mellitus: A review of the literature. Diab Vasc Dis Res. 2021;18(6):14791641211058856. doi: 10.1177/14791641211058856
10. Dharia A, Khan A, Sridhar VS, Cherney DZI. SGLT2 Inhibitors: The Sweet Success for Kidneys. Annu Rev Med. 2023;74:369-384. doi: 10.1146/annurev-med-042921-102135
11. Zhang Y, Yang Y, Huang Q, Zhang Q, Li M, Wu Y. The effectiveness of lifestyle interventions for diabetes remission on patients with type 2 diabetes mellitus: A systematic review and meta-analysis. Worldviews Evid Based Nurs. 2023;20(1):64-78. doi: 10.1111/wvn.12608
12. Siddiqui R, Obi Y, Dossabhoy NR, Shafi T. Is There a Role for SGLT2 Inhibitors in Patients with End-Stage Kidney Disease? Curr Hypertens Rep. 2024;26(12):463-474. doi: 10.1007/s11906-024-01314-3
13. Markowicz-Piasecka M, Sikora J, Zajda A, Huttunen KM. Novel halogenated sulfonamide biguanides with anti-coagulation properties. Bioorg Chem. 2020;94:103444. doi: 10.1016/j.bioorg.2019.103444
14. Krause M, De Vito G. Type 1 and Type 2 Diabetes Mellitus: Commonalities, Differences and the Importance of Exercise and Nutrition. Nutrients. 2023;15(19):4279. doi: 10.3390/nu15194279
15. Resnick B, Galik E, Boltz M, Holmes S, Fix S, Vigne E, et al. Polypharmacy in Assisted Living and Impact on Clinical Outcomes. Consult Pharm. 2018;33(6):321-330. doi: 10.1016/j.ejmech.2021.113378
16. Kathuria D, Raul AD, Wanjari P, Bharatam PV. Biguanides: Species with versatile therapeutic applications. Eur J Med Chem. 2021;219:11337. doi: 10.1146/annurev-physiol-031620-095920
17. Rippon MG, Rogers AA, Ousey K. Polyhexamethylene biguanide and its antimicrobial role in wound healing: a narrative review. J Wound Care. 2023;32(1):5-20. doi: 10.12968/jowc.2023.32.1.5
18. Amouzad Mahdirejei H, Peeri M, Azarbayjani MA, Masrour FF. Diazepam and exercise training combination synergistically reduces lipopolysaccharide-induced anxiety-like behavior and oxidative stress in the prefrontal cortex of mice. Neurotoxicology. 2023;97:101-108. doi: 10.1016/j.neuro.2023.06.004
19. Jhund PS. SGLT2 Inhibitors and Heart Failure with Preserved Ejection Fraction. Heart Fail Clin. 2022;18(4):579-586. doi: 10.1016/j.hfc.2022.03.010  
Volume 3, Issue 1
april 2026
Spring 2026
Pages 57-66

  • Receive Date 12 October 2025
  • Revise Date 19 November 2025
  • Accept Date 30 December 2025
  • First Publish Date 30 December 2025
  • Publish Date 30 April 2026